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The goodness of fit problem for multidimensional data is considered based on
“near-neighbor distances”, i.e., all interpoint distances closer than a specified
value 7,. The asymptotic distribution theory for two general classes of statis-
tics based on these quantities is considered as well as their asymptotic
relative efficiencies Surprisingly, in the class of tests based only on small
interpoint distances, the locally most powerful such statistic is merely the
number of pairs that are closer than r,. In another class of tests considered
here, the optimal test performs as well as the likelihood ratio test.

1. INTRODUCTION

Goodness of fit tests for multivariate data have been studied by various
authors, with special attention paid to multivariate normality. See for in-
stance, Andrews et al (1973) and Koziol (1986). We study here tests for
this general problem, based on the interpoint distances and derive their
Pitman relative cfficiencies. This enubles us to pinpoint asymptotically
optimal tests, within the classes of test statistics studied.

Let X;, ..., X, be i.i.d. random vectors on R with a common density

p(x), and | - || denote the usual Euclidean norm on R4 Jammalamadaka
and Janson (1986) study the limiting distribution of the statistic
e XX = 1) (L)
I€i<i<gn

where I(-) is the indicator function, as a special case of a generalized
U-statistic. By an appropriate choice of r,, we may call such pairs of (X, X))
such that | X; — X; || < 7., near-neighbors or ry-close neighbors (which is
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392 GOODNESS OF FIT TESTS IN HIGHER DIMENSIONS

somewhat analogous to the idea of higher order spacings in R?) as opposed
to the nearest-neighbors, which are analogous in R*, to the 1-step spacings.
See for instance Kuo and Rao (1981) for tests based on spacings. In a
parallel paper, we consider tests based on the nearest-neighbor distances,
and derive results along the lines of Bickel and Breiman (1983) and
Schilling (1986).

Here we will consider the following two families of test statistics based
on “small” interpoint or r,-close neighbor distances:
(i) F1: all statistics of the form

Up=Un()= 2 Rt X — X, )13 X — X || < ra),
I<i<ijsn

where 4 is a real-valued measurable bounded function defined on [0, 1], and
h is bounded and not almost.everywhere zero on [0, 1]; {ra} is a sequence
of numbers such that r,—> 0 and n? r? — oo as n— 0. This family of test
statistics is based on near-neighbor distances. The rate at which 7, goes to
zero, is dictated by considerations of asymptotic normality of these statis-

tics.
(i) F2: all statistics of the form

Uny = Uny (h) = z (X)) + DI X — X5 |l < 1),
1<i<i<n

where 4 is a real-valued, measurable and bounded function defined on R4,
not almost everywhere zero, and {r} is as in (i).

In Section 2, the limiting distribution of the class of statistics U,, and
their asymptotic relative efficiencies (ARE’s) are studied. It is found thatin
F1, the one with s=constant is optimal in the sense that it has the maximum
efficacy. That is, the statistic given by (1.1) is the most cfficient in the family
F1. In Section 3, we study the AREs for the class of statistics F2. It is
shown that the optimal test in this family F2 is asymptotically as efficient as
the likelihood ratio test. Because of this fact, we saw no need to consider
the larger class of statistics of the form:

B X X)) L1 X — Xl < 1a)-
<y
One can study this class, but this requires more stringent assumptions on
the function { (-,-) as compared to those we make on /4 (-) in the definition
of Uy, The different assumptions and the results are illustrated through
an application in Section 4.
A word about the notation: “a, ~ b, will mean that a,/b, — 1 as

d
n — oo for two sequences of real numbers {a,} and {b,}. We write — for
convergence in distribution.

- a‘_
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2. THE ARE FOR THE STATISTICS IN FAMILY F1

Let H, be the null hypothesis given by H;: p(x) = p,(x) where py(x) is a
specified density, and H,, be a sequence of alternatives given by

Hyp: p(x) = pu(x) = Po(%) + va In(x), 2.1

where v, = 0 as n — o and /, converges in L! and L2 norms to some
function / with

J‘ l(x) dx = 0.

Let E, and E, denote the expectation under H, and Hy, respectively.
Let £, be a bounded measurable function defined on R X R which is
symmetric (i.e. /5 (x, ») = fa (7, x) for x, y € RY). Define

Up = )X o (Xi, X)),
1<i<jn

gﬂ (x) el El)f;l (x, ),)

and

ont =} n* [Eg fu* — (Eo fu)*] + 1° Eq (8n — Eqo o)™ (2.2)
From a slight generalization of Theorem 2.1 of Jammalamadaka and Janson
(1986), we obtain

THEOREM 2.1 Suppose that as # — oo,
(@) sup| fa(x, )| = 0(on)
X, ¥

(i) s1ip Ey| fu(x% Y) | = o(oa/n).

Then
. n
U, — (,)) Eofn 4
= — N(0, 1) under H,
Oy
and
Un - (2) Eﬂf;l d
i — N (0, 1) under H,,. [
[o1]]
Now take

L@ =h Ix—=yNIWx—y| <r) (2.3)
as a special case. Then

Ey fo = j R x =y 1) 2o (%) po () dxdy
||x—y[|<r,,
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I

mi D) [ [ 260 poe+ v i)t
<1
= Rl # 1)) (Po*po) (— ra) du, 2.4)
lJul} <1

where ““*”” denotes convolution.
Assume p, € L2 Then p, *p, is continuous. Note also that since k is
bounded, the Lebesgue Dominated Convergence Theorem (LDCT) yields

B0 ) (2atpo) (=rat) du—(py'0) ©) [ (1) d

flafj <1 Il <1
- f Pa@) dx f Bl ) du.
<1
Thus by (2.4)
Eofare ! fp‘:;(x)dx j Bl ) du. 2.5)
<1
Similarly
Byf? i rt jpa(x)dx j e () w ) d 2.6)
<1

and if p, € L3, then

Bl Hp%(x) - (Il’%(x) dx)z]

Bl du |
[J] <1
= [ maww du | Vary [p)) @7)
<1

where Var, denotes the variance under H,. Substituting (2.5), (2.6) and (2.7)
inte (2.2) yields
gt [ a [ o3 ax
fluf <1
2
sl hQup @] vartan @
lle <1

Now we are ready to prove
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THEOREM 2.2 Suppose p, & L3, [ & L? and let
H ['—11: .:r = 1':‘ ;
tim () B fole e, (2.9)
where f» is as given by (2.3). Then

n N(0, 1) under H,
U"‘_(2)E°fn d{ Q3 ’

= | N, 1) under H,,

On

PrOOF. Since n*¢ - oo and # is not equal to zero almost everywhere
on [0, 1], (2.8) shows that

> 3 it j B0 l) du [ pacs) dx oo,

[lull <1

Hence sup | f, | < || % llo == 0(cx). Moreover, by the Cauchy-Schwarz in-
equality

2
Cn

B dha = [ 1he Ix =y 100) &
lx—y|<r,
12

< 2 leo ( j r3(y) dy J dy)
llx =yl <rn =7/l <ra

<l Al ( | no dy)”z clf2 i,
llx ~yll<rn

where Cq= du = n43T'(d/2 + 1). Thus

flul <t

sup EO 'f;l(xs Y) l =0(’Z/2) = 0(0‘,,/”)-

By Theorem 2.1 we have

U——-"l iy (; ) i j—) NQ©, 1)

Cpn
under H,, and
Unl— (;)Eﬂﬂl Unl_(g)Enf;r

_ n\ Enfo—Efy 4
n = On +(2) L O'n_. -—)N((.L, 1)

under Hy,. 1

In order to find the ARE of the statistic U,;, we need to choose appro-
priate alternative sequence, i.e., the rate v, in (2.1) as well as fine-tune the
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choice of 7, such that the limit p in (2.9) exists and is neither zero nor
infinity. This involves various cases, which we discuss after equation (2.11).
As in (2.4) and (2.5) and by the assumptions on p, and p, we can obtain
Efore [ BQuD de [ 1) IO a5
<1

Case A: Assume I Po(%) I(x) dx 7 0. Then

Enfn—Eofa~ 2r% v, J‘ h(|ul) du I Do(%) 1(x) dx. (2.10)

flull <1
For notational convenience, write
a(h) = S h(|ul) du.

fll <1
Then by (2.8) and (2.10), the Pitman “efficacy”

5)4584]

4124 42 a®(h) (] Po(x) I(x) dx \,2

nt

4 2 nrta(®) [ 3G dx 4 i () Var(pu(X)

(nv2) (nrs ( j Dofx) 1 (x) dx)2

" L sy [ pho) s+ Vary po(X))

The limit of this expression in (2.11) will depend on the rate of ry.

(2.11)

A() If ¥4 — 0 such that nrd - oo, then from (2.11) we can see that for
Yy = n'—1/2’

A ] 5
i [ (1) Efm Bt [] it a |

> LA2 Gn Vary( po(X))
Thus by Theorem 2.1,

2
po(X) 1(x) dx
e n E,,f;,—EfnZ,M___l
Eﬁ(Unl) e ’1:_1)130 [(2) 0'n 0— ] - Yaru( Pn[_‘*l)) E

which does not depend on 4. Therefore in this case all members in F1 are
equally efficient.
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AdGi) If 4 0 such that n¢ >« (0, o), then with v, = n~1/?,

o E.f. ]2
Eff (Un1): lim (;)j"f" Ln.fn]

n—»co ]

« [I Py (%) I(x) a’x]2

é a(/12)/a2(h)f PE(x) dx + o Vary py(X))

Thus maximizing Eff (Uy,,) in this case is equivalent to maximizing

(1) du)z
a(h) <t okl By, (2.12)
1 #() ) du
<1

By the Cauchy-Schwarz Inequality, the quantity in (2.12) is at most equal
to

Rl ul) du I du
o< <t
B2 (|| w1l du
flufl <1

= du = ¢y,

[l <1

which happens at 4 = constant. When 4 = 1, U.(1) is the same as that
given in (1.1), which is the number of pairs of points within a distance r,.

A(iii) If nr; — 0 then v, should be taken as (n2ri)-12 Let r? — O(n-),
1 < p<2 Theny, = (n? rH-12 = O(n-G-n/%), By Theorem 2.2, we get

Eff(U,,) = i—z a*(h) [ f Po(%) 1(x) dx]

i a(h?) Ipﬁ(x) e

-2

Thus again the U,; with 4 = constant has the maximum efficacy in F1
which results in the test statistic (1.1).

Case B: Consider the case where J‘ Po(%) I(x) dx = 0. Then by (2.10)

Enfy — Ey fo ~ riv2 a(h) j I%(x) dx.
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[(’21) En fa ;"Eofn ]2

nt

7

Hence

7244 a*(h) ( I (%) dx)2

3 18 a() [ ph) dx + nt i ah) Var (i)

(nvy) (nr) ( I I2(x) a’x)2
% a(h®a*(h) I pR(X) dx + nrd Var( py(X))

Thus when Var p,(X)) > 0, we have

B(i) If nrd — co, then for v, = n~14,

(JF{.\‘) c.-’.:r)2

Ef (Und) = Nartp@n)

which is again independent of 7.

B(ii) If ¢ a € (0, ), for v, = n~1/4,

. [ J' 2(x) dx]2

Eff(Un) = 1 | .
L aiyar(t ] PE(X) dx + a Vary(py(X)

B(iii) If nr? — 0, i = O(n=") (1 < p < 2), then for vy = n=C-DI1,
B a*(h) ) 271/(2~p)
Ef (Uny) = [2 e I 12(x) dx] :
When Vary( py(X)) = 0, v, and Eff (Uy,) are the same as in case (iii) above.
In all these cases, we see that the optimal /(-) is obtained by maximizing
[a*()/a(h?)]. Since this optimal choice is to pick 2 =1, the locally most
powerful statistic in all these cases is still Upny(1) given in (1.1). In other
words,
ARE (Un(1), Un(h)) = 1

for all U,y(h) € F1.
3. THE ARE FOR THE STATISTICS IN FAMILY F2

For U, take fu(x, ») = [h(x) + A I(| x — ¥ || < ra) so that

Unz =5 2 fn(Xh XJ)'
I<i<jgn
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As in the proof of Theorem 2.1, we can verify that f, as above, still satis-
fies the conditions of Theorem 2.1. Therefore, for the class of statistics Up,,
we have the following result, which parallels Theorem 2.2 for the class F1.

THeoREM 3.1 Suppose p, & 13, I & L% and

lim (n) .ii:"_,'(n . L_ﬂ_.ﬁ| =u.

n— 2 Gn
Then
n
U, — (2) Eofu 4 {N(O, 1) under H, N
Gn N(, 1) under Hy,
= With the assumption on p,, p, and / € L3, we now evaluate  and o,
Bfi= [[ 06 +H00 20 pi0) dray
”x_y“<rn

= f J’ [(x) + h(x + 1] po(X)po(x + ryu) dudx (3.1)

[ll] <1
and
Eyfo = a ff [h(x) + A(x + )] [Po(%) 4+ vuda(X)1 [Po(x + Fatt)
fluf| <1
+ valn(x + rat)] dudx
Hence
Eyfo—Eyfur~1y I J. 21(x) 29 po(X) ln(x) dudx
<1
~ dcar? vy J h(x) (%) I(x) dx. (3.2)

Similarly

Eof 5~ 4Cdr:f h*(x) p3(x) dx and

Ey(8o — Ey fu)? ~ 4ry’ ¢ Vary [A(X) py(X)]-
Thus, from (2.2)

on ~ 2n%cqr? f K2(x) p3(x)dx+4n3r¥c] Vary [A(X) py(X)] (3.3)

and consequently,
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555547

cd(nvﬁ) (nr‘,f) (I h(x) po(x) U(x) dx)

(3.4

% I 12(x) pA(x) dx -+ canr Vary(h(X) poX))

We have two cases now:

Case (i) Let nr? — oo and choose v, = n~1/%. Assume that I(x)/p3(x) is
bounded. Then,

v (35507 -
If we define
() = 10)/Po),
then  Egr(X) = j J(x) dx = 0 and

Uy — EHHO0 BOOAO0] _ Covt 100 i, D)
g2 Var (A(X) Pl X)) w Var, (/(X) Pl X))

< Var(r(X)) = j () pol) dx 3.5)

for all U,, € F2, with the equality holding when h(x) po(x) = r(x). Thus
(he statistic Uns(h) with h(x) = r(x)[py(X) = I(x)/p%(x) has the maximum
efficacy, which is given by the last term in (3.5).

Consider the statistic

Va= 3 rX) = Z (XDIP(XD:
which is asymptotically equivalent to the likelihood ratio test for testing

the simple H, versus the simple alternative H,.. By the Central Limit
Theorem we can obtain that for v, = ne,

2
[0 d)  pygrann
Var, GO0) Van((0) Ey(r*(X))

Eff(V,) =

= J. 12(x)/po(x) dx.

This is the same as the right side of (3.5). Thus the Une With & = I/p§ has
the same efficacy as that of the likelihood ratio test if nrd - oo.
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Case (ii) Let nrd — 0 and choose ¥ = 0o@?), vn=(n2r4)12= O(n=C-n12),
Assume that 1(x)/pe(x) is bounded. Then, from (3.4)

Ee) = (J. h(x) po(x) (%) dﬂ o I e
[ 0 pacoa

for all U,, € F2, with the equality holding when h(X) po(x) = ().
Thus the statistic Up, with A(x) = /(x)/py(x) has the maximum efficacy,

which is equal to 2¢4 I I*(x)dx. The resulting optimal statistic is

[;‘.’{X;] l'{.k’jl
1<i<j<n Pl X)) py(X))

]I( | X; — X 1l < Fn).

4. EXAMPLE

Now let us consider the null hypothesis
Hy py%,y) = K emW M2 J(x*+y* < R)
against a sequence of alternatives

H,, pa(x, ¥) = K exp (— (x* + 2paxy
+ /21 —en) 162 + 2 < R)

where K and K, are the constants such that j Po = I pn = 1 and {ps}is a

sequence of numbers in [0, 1] converging to zero.

This is a truncated version of the problem of testing the bivariate nor-
mal distribution N(0, 0, 1, 1, 0) versus N(O, 0, 1, 1, pu). The use of trunca-
tion is to satisfy the assumption that //p§ is bounded. It may not be as
natural as the untruncated case, but should be good enough for all practical
purposes because R can be chosen as large as we want.

In order to apply the results of the previous sections, we need to rewrite
pn in the form of p, + val,. This can be done simply by putting

In= Vn_](pn — Po)-

In both families F1 and F2, we see that in order to get maximum efficacy, ry
should be chosen such that nrf — co. In this example, d = 2, hence we
choose r, = n~?* with 0 < 5 < 1/2, Then with p, = v, = n=Y2, it can be
shown that

In(x, ») = I(x, ) = xy po(*, ¥) “4.1)

in L' and L2 norms. The proof of this convergence is not difficult to show
but rather lengthy and therefore the details are omitted here. The other
conditions on p, and / are easily seen to be satisfied and due to the trunca-
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tion, //p% is indeed bounded. Thus the best Uy, test statistic based on the
bivariate sample {(X;, Y3), i = 1, ..., n} is

Up — 1<-2< (h(Xy, Yo + A(XG, YL I[(X; — X))? + (Ys — Y))? < n—2]
isjgn

4.2)
where 0 < § < 1/2 and

I(x, 1
e, 3) = A = oy exp (5 + ) 16 + 7 < RO

The efficacy of U,z in (4.2) is
Eff(Uz) =J 12lp, = ” Kx2y? exp (— (x* + y®)/[2) dxdy.

A2+ y2< R2

If R is large, then

Eff(Un) 22%” x¥y2 exp (— (x% + ¥%)/2) dxdy = 1.

To obtain a critical region, we can use the result of Theorem 3.1 that under
H,, viz.

vi=(3) Boti 4
—_—2l . o, 1),

Cn

By (3.1) and (3.3), it can be shown that

Eofy = 218 [c,, [ w08 + 06 | = 2070 [cd [1+ 003 ]

= 2n=% O(n=%) = O(n~*)

and
2
o2~ 4nd rH c,z,[s hp} — ( I hp%) ] = 4nd n—% CZJ‘ 12/p = 4n3-% x2,
Thus

i )
(2_) Eofu 2 O(n=%%)

28328 o

= O(nl/*-2%),

Cn

If, for instance, we take 8 = 3/8 so that

( ’2’) E, fon = O(n=1%) 0,

d
U,ol2mn®/t — N(O, 1).

Thus an asymptotic critical region with significance level « in this case, is
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iven by

s Un2[2rn3/* > 2y

where 2z, is the (1 —a)th quantile of the standard normal distribution
function.

One can also construct tests using the U, statistic. However, because

' J:[ I(x, Y)po(, y)dxdy = K2 J. xy exp (—(x2 -+ »?)) dxdy=20,
x2+y2<R?
v, has to be chosen as n~Y% Thus any U, test can only detect the alterna-
tives converging to the null hypothesis at a rate of n~V/4, Compare it with
the convergence rate of n=1/2 for Up,, we seethat ARE(U,,, Us,) = 0. Hence
with large sample size, tests in the family ¥1 are far less efficient than Un

in this example.
5. CONCLUSIONS

The maximum cfficacy that a U, test could possibly achieve under
e =172
vp == 11 18

( f po9) 109 dx) ool T

Var, (V) Var(py(X))

I(x)
Polx)
where the inequality must be strict. Otherwise /(x) would be proportional

< Var (l(X)/py(X)) = dx (5.1

to p2(x), which is impossible because / has to satisfy J I(x)dx = 0. The last

expression in (5.1) is just the efficacy of the best U, statistic. Thus it is
clear that the class of tests in the family F1 are not as efficient as the like-
lihood ratio test as well as the best test in F2. Indeed this is to be expected
from the fact that the optimal test in F1 does not take into account the
po(x) and the /(x). But on the other hand, the optimal test in F1, which is
independent of p, and [ and uses only the number of pairs that are closer
than r,, can give a quick test.
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